The New Era of Energy: Cleaner By Demand

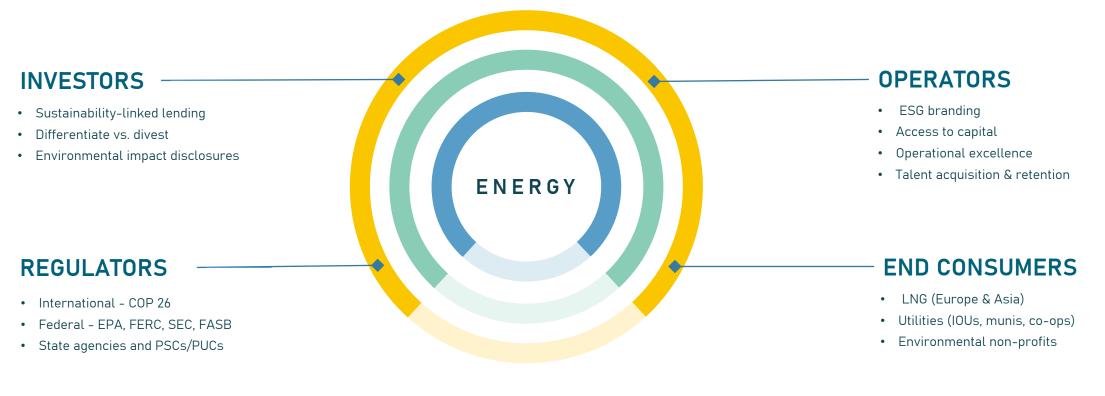
September 13, 2022 Liz Arthur

Key Themes

01

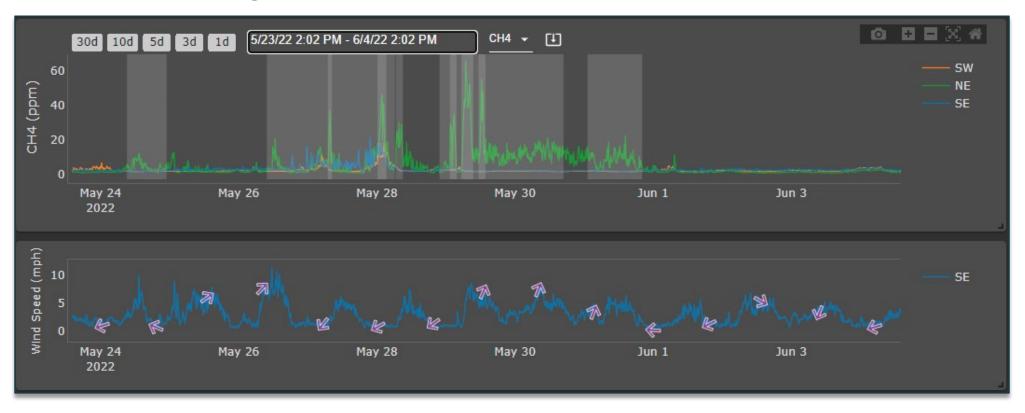
Evolution in Emissions Monitoring

02

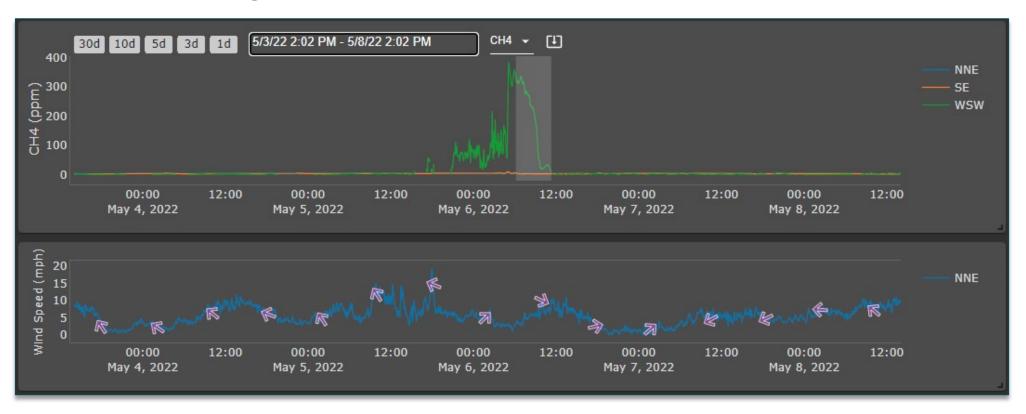

Midstream Carbon Intensity Scoring

3 RSG Insights

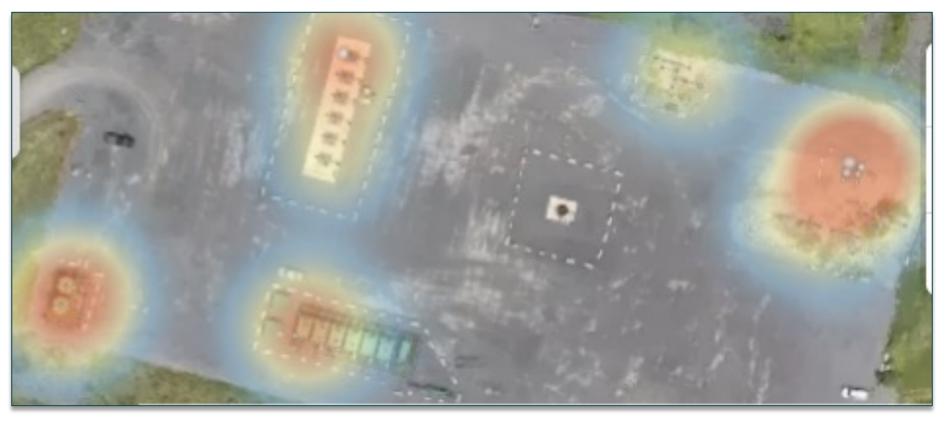
ESG Is Being Operationalized


The Natural Gas Industry Is Under Tremendous Pressure To Disclose and Prove Emissions Reductions

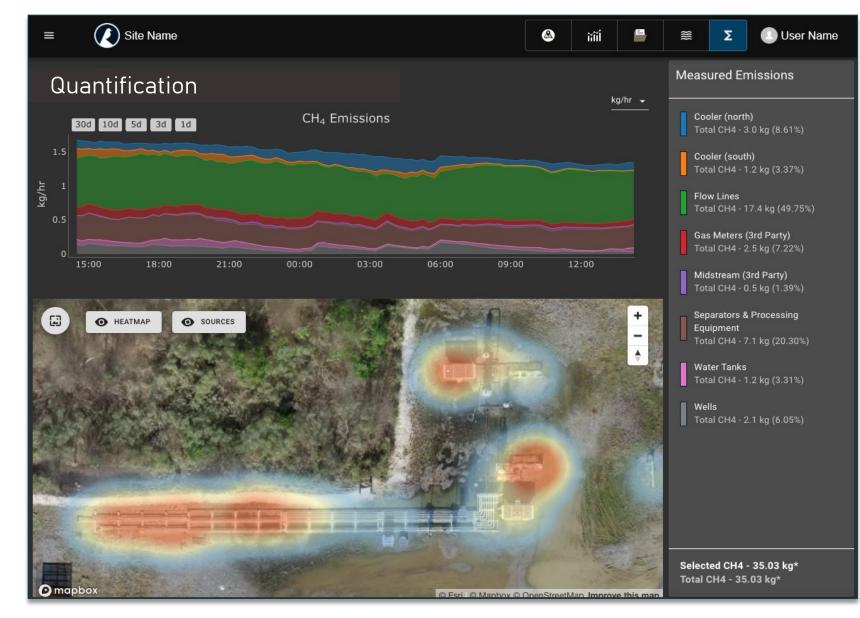
UPSTREAM, MIDSTREAM, DOWNSTREAM


Emissions Management 1.0: Onsite Leak

- Smart Alerts indicated a methane leak
- Operator analyzed wind and emissions data to source to a cooler line and verified using an OGI camera
- Operator used the persistent alert to track the maintenance team and identify when the leak was fixed


Emissions Management 1.0: Offsite Emissions

- Smart Alert was triggered by a fugitive emissions event; wind and emissions data analysis suggested offsite source
- Operator used OGI technology to validate emissions due to a nearby operator
- Operator alerted neighboring operation and changed Smart Alert settings to ignore offsite emissions from that pad

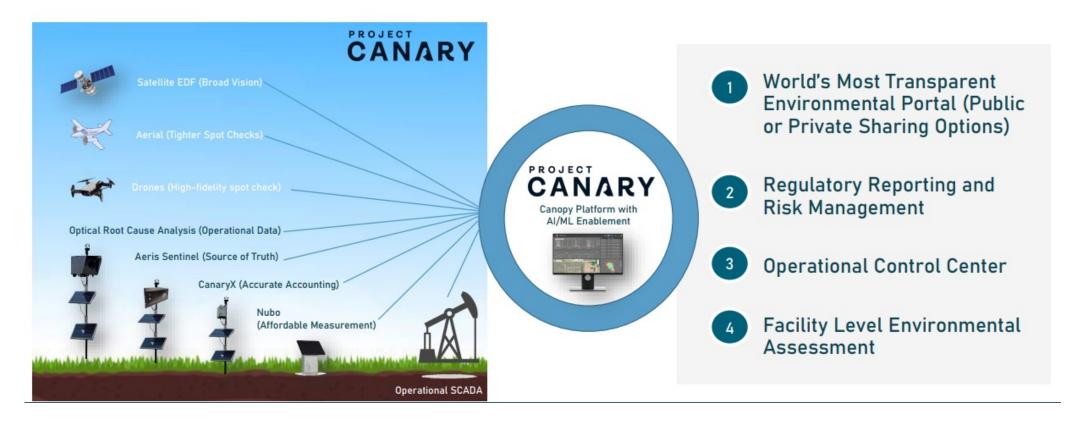


Total Site Emissions 2.0: Automate Analysis to Alert the Exact Location

- Accurate emissions profiling for every wellbore/facility assessed
- Actionable data to set baselines and prove abatement

Total Site Emissions 2.0: Hourly Mass-Value Emissions by Equipment

Emissions Data Trends and Insights 2.0


Emissions Volatility Indicator (EVI)

Large EVI indicates a period with a high degree of emissions spike events

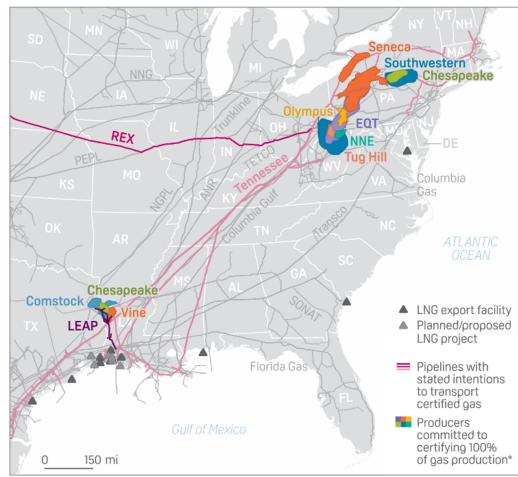
40.6% 84.2% 39.6% 26.0%													22	104		-	-		70									
	uary	February						March					April					32.1% May						June				
Weekly Average CH4 Emissions																												
	2001-01102-002	1/2/22	4 Emis	sions	1/23/22	1/30/22	2/6/33	2/13/22	2/20/22	2/27/22	3/6/22	3/13/22	3/20/22	3/27/22	4/3/22	4/10/22	4/17/22	4/24/22	5/1/22	5/8/22	5/15/22	5/22/22	5/29/22	6/5/22	6/12/22	6/19/22	6/26/2	
	1.8	2.0	1.9	1.9	2.0	1.7	2.2	1.9	2.1	2.2	2.2	2.0	2.0	1.9	2.0	2.0	2.0	1.9	1.7	1.6	1.8	1.7	1.9	1.8	1.8	1.8		
ΝE	3.1	2.0	2.1	2.0	1.8	1.7	2.0	1.8	1.9	1.9	2.0	2.0	1.8	1.7	1.9	1.8	1.8	1.7	1.7	1.7	1.8	1.7	1.7	1.8	1.7	1.7	1	
SSW	1.9	2.3	2.2	2.2	2.6	2.3	2.1	2.3	2.2	3.1	2.5	2.1	2.4		2.3	2.3	2.3	2.4	2.2	1.9	2.2	2.2	2.8	2.3	2.5	2.4	2	
CH4 Emissions Histogram							Count of Alerts by Month										Count of Alerts by Root Cause						AlertType					
0%									AlertType January February				and the second second	March April May June				6	2		7	7				00ppm 00ppm	i.	
0%									10ppm		1	1	6	_		3	7	4	4						S	mart		
0%									100ppn	n	1	3	_				1	2						-	1		1	
0	2 4	6	8	10	12	14	16 1	8 20	Smart								2		Repa	sir t	lo Issue	Mainten	nance Nor	mal Busi.	Test	Sch	neduled	
									Alert	Durat	ion by	Mont	h (Min	utes)				A	verage	Alert	Durat	tion by	Root	Cause	(Minut	es)		
									AlertTy	pe Jar	nuary	February	Marc	h A	pril	May	June	150	120	0.0								
CANARY								10ppm	1	.8.0	30.0	19.8			17.7	18.7	100			69.0								
		C,	AN	A	R	Ĭ.			100ppn	n 2	20.0	83.0					92.0	50				24.	.0	21.0	16.0		44.3 r 15.9	
									Smart								154.5		Norr	nal	Repair	Tes	st N	lo Issue	Schedul	d Mai	ntena	

Emissions Platform 3.0: Verified Climate Insights

Dynamic Environmental Assessment

TrustWell[®] by Project Canary

RSG Update


Certified Gas Gains Momentum

"Methane emissions have emerged as a key performance metric for certified gas, with an emphasis on monitoring and measurement."

S&P Global, October 14, 2021

"Record volumes of gas certified for its environmental credentials have come to the market after nearly two dozen US gas producers committed to external assessment of their emissions and ESG criteria last year."

S&P Global, January 14, 2022

*Not shown: Crestone Peak Resources in Colorado committed to certifying 100% of gas production; total volume undisclosed. Data as of December 14, 2021 Source: S&P Global Platts Analytics, company websites

Recent RSG Contracts and Public Transactions

Recent Developments:

- Long-term RSG contracts are becoming increasingly more popular in the marketplace
- Upstream producers and downstream customers are quickly recognizing the benefits of RSG and its essential role in meeting the ESG and environmental standards demanded by the public markets and investors

NEXTDECADE CONGIC NextDecade and ENGIE Execute 1.75 MTPA LNG Sale and Purchase

> Agreement (May 2, 2022)

"The signing of this SPA is an important step in showing our commitment in the areas of environmental stewardship, social responsibility, and governance best practices, while upholding the LNG industry's highest standards. It also shows how we can help meet our buyers' climate change initiatives, while providing them access to secure energy supply" – Matt Schatzman, NextDecade's Chairman and CEO

Southwestern Energy, Uniper Execute Supply Agreement for RSG (June 14, 2022)

"Southwestern Energy is strategically positioned to supply the world's growing energy demands with its responsibly sourced gas. We believe natural gas is foundational to a low carbon future, and that U.S. natural gas in particular plays a vital role in supporting global energy supply and security. This agreement further demonstrates SWN's differentiated position to reliably deliver responsibly sourced gas both here at home and abroad" - Bill Way, Southwestern Energy President and Chief Executive Officer

CANARY